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I. DETAILED PROOFS OF KEY LEMMAS AND THEOREMS
Proof of Lemma 1: Adding AI; on the LHS of V?f,(6) >
—L1,, and using the definition of fi, we obtain

V2 fu(6) + ALy > il (1)

Using the expression for h(0,0%) as given in definition 1,
we have V2h(0,0%) = V2f,(6) + M. Substituting in
the above, we have V2hy(0,0") > jl;, which implies that
hi(0,0) is pi-strongly convex for all ¢.

Proof of Lemma 2: Using the reverse triangular inequality for
two vectors 0% and 0%, and Lipschitz smoothness, we have:

IV 0] = IV£(0Y)] < IV.f(6%) - V6]
< L6 - 0. @)
Since w' = 8" —67, we have |V £(8")| < ||V £(6")||+L|w?.

The same result is obtained (as an approximation) by using
Taylor series expansion as follows:

f(8") = f(8' —w') ~ [(8") —w'V[(8"). 3)

Differentiating both sides of the above equation and consider-
ing the norm, we have

IS0 £ IV F@YI] + w1V £ ()]

< [IVF(@)] + [w'||L, )
where the last step holds by the spectral norm
property, ie., [|[VZf(6Y)] < L if f satisfies
IVf(z) = Vi)l < Lllz—yll.

Proof of Lemma 3: The local objective function, as given in
P2 is defined as follows,

~ A
hi (076" = 5”‘9?1

(0 + =0 ®)
where 6" is the available aggregated global model from the ¢-th
aggregation epoch. From (5) in the main manuscript, we have
the noisy FedAvg decoding rule given as 6 = %215:1012 +
w. Differentiating (5) with respect to 65!, we obtain

Vhi, (0111 6Y) = V£,(0141) + A [efjl - ét} . ©)

We introduce the noiseless parameter update as 0t =
LS~ 6%, which leads to ' = @' + w'. Considering /s
norm of both the sides of the above expression, we have
IVhe(65:6°)] = [V fu(617) + A (6,7 — 6') — aw']|.
(7
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Applying triangle inequality to the above, we obtain
IV (650" < IV fu(6;") + X (657" — 6°) || + Allw].
< [ VA (669 + A w'|. ®)

Using the notion of inexactness as mentioned in definition 1,
we have ||Vhi (651 60%)| < 7|V fx(6?)]. the expression in
(8) can be rewritten as

IV (8575 0°) | < Y[V £(8%)[| + Allw’|| )
Finally, using Lemma 2, we have

IV (871560 < AV fie(8)]] + Ll w' | + A w'|

<AV (O] + (YL + X)W (10)
Proof of Lemma 4: From Assumption 4, we have
< B[ (6]
< S [V £(8) ]
P
< %KB2\|VF(0~t)||2, (i

where ~ is a constant. Note that in COTAF, k is a function
of the number of SGD epochs and learning rate [1]. Further,
the last inequality follows from Assumption 1.

. . .. . 2
Since in the case of full participation, w* ~ A/ (0, K%ptld),
therefore

d02
E¢ [HWtH ] K2 (12)
Then, using Lemma 4, we have
do? kdo?B?
Ewe [[W']%] = IVE@OYH>.  (13)

K2pt — K2P

Using Jensen’s inequality, we can rewrite the above as

VrVdoB
Ewe [[IW] < vEw [[w!]?] < IVE@Y)] (14)
\F

Furthermore in partial participation case,

wi, ~ N (0 ,K2 -1,), hence
do?
)2
Ewe [[w,]%] = T (15)

Then using Lemma 4 and Jensen’s inequality, we have

t t \/E\/&O’B Nt
Ew: [IWpll] < 1/Ewe [[WE]?] < WHVF(H )l

(16)



Similarly, for fading case, Wtf ~ N(0, mld), there-
fore
do?
t
Ew (IWHI] = iz (17)
Then using Lemma 4 and Jensen’s inequality, we have
VdoB ~
E. [|wt]] < [w } VEVAOB |\ G gt
W] < (B I I2] < s 9@
(18)

Proof of Theorem 1: Consider the local objective function in
(15) of the main manuscript as follows,
- 6. (19

_ A
hi(071;6°) = 5”‘92“

fr(0;) +
Denoting 0*! = E.[0.'] and differentiating the above
equation and taking the expectation Eg[-], we obtain the
following:

_ -1 1 .
0" — ' =—E, [V£i(6}™)] + 1Ex [th(e);“; et)]

A
+w, (20)
where E;[0'] = 0" + w'.
From Lemma 1, we know hy(-,-) is i-strongly convex. Let
OZ’tH = argming Vhy(0;6"). Using ji-strong convexity of
hi(+,+) and (9) we obtain

16+ @1)

A
o 9t+1 S Z vfk et +Z Wt .
| u” (6]l u” |

Directly from fi-strong convexity of hy(-) we have that

A1
16},

- 1 -
—-0'|| < ﬁHka(et)ll- (22)

Combining (21) and (22) and using triangle inequality we
obtain

. Lo A
163" = 0" < =V (0] + = V(8] + = [lw'].
fi i i
(23)
Substituting for ||V f(6")|| from Lemma 2, we obtain
~ 1+ L+ A
67 = 0"l < —IVAO)I+ w4
Now we bound [|#*T! — @?|| from (20) as follows.
1971 — 0"l = |[Ex[6)7"] — Ex[6"] + w'|
< Ei|0," — 0'l| + [[w']) (25)

where the last inequality is due to triangular inequality. Sub-
stituting the upper bound on ||} — 67| from (24), we obtain
the following:

1+~

E[6;" — 6|

IN

EL[IV (69 ] + (’VL“) ']

IN

(26)

(“52) siwr@+ (2252w

The last inequality is due to the bounded local dissimilarity

assumption, ie., Eu[||Vfe(8)]] \ ExllVF(0)]2 <

|VF()||B. After substituting (26) in (25),we have
_ 1
16— gt = ( :7) BIVF(@Y)
L+ )\
+(” ) Wil + w!]
i
147
( : )anwt)n

L+yL+AY,
n (u) .

(27
We simplify (20) as follows:
_ -1 1 .
6"+ — 0" = K, [V/(6))] + 1B [th(e,tjl; 0t)] +w
_ -1 it
=5 {]Ek [ka(a )}
+Ex [ka(OZH) — Vhi(0;:6") — ka(ét)} } +w'

(28)
We define, . .
mtl 2 R, [ka(o,fjl) ~ V(6 — th(e,i“;at)},
which is the second term on the right hand side of the
expression above. Since Ej, [ka(ét)} = VF(6"), we have

6" — 0" = [0, — 0" = _71 (VF(ét) + mf“) +w'

(29)

Now we derive upper bounds for the two terms on the right
hand side above. To obtain an upperbound on the norm of
m’*t!, we use the L-Lipschitz smoothness assumption, triangle
inequality, (26) and Lemma 3 to obtain the following:

It < By (2105 — 0] + Ex|[Vhi(6;: 6]

<1 |(FE) mvE@)+ () |
BV A (8] + (4L + 2w

(30)

Further, using Assumption 1 to simplify Ey[||V fx(6%)|] in the
above expression, we have

) < 28 (E2) 5 IV F@)

L+ A
+ [L (7 - )+('yL+)\)] [w]. 31)
Using  Cauchy-Schwartz  inequality, we know that
SHVF(OY),m't) < 1|[VF(6")[/[|m'™|. Hence, it

can be shown that

F@) ) < 5 |28 (Z52) 4B [R@) P

() s on )| w1 EE0

(
1
Y (32)



Using L-Lipschitz smoothness of F'(-) and Cauchy Schwartz
inequality, we have

F(6Y) — F(6) < (VF(6),0' — @) — (VF(8!), w)
L, - L =
s Lo e L net —onwy 39
Substituting for 8+ — @* from (29), we obtain
at+1 5t tyT | —1 it t+1
F(8"Y) — F(8') < VF(8Y) T(VF(G)—Fm )
Liaier _pey2 o Lotz gttt _ gt ikt
+ 5o O°" + S lw'I” — L] O°|llw"ll (34)
Substituting for ||@**! — @*|| as derived in (27), we obtain
PO~ F(8") < 5HIVF@Y) 2 + £ { (22) BIVF@)|
_ 2 .
+ (ERLE) !} + 4 [LB (552) + 4B IVR(@Y)?

+3[E(352) + 6L+ 1) W IIVF@)

+ Liwt)2 - L (52) BIVF@")) + (B2 ') } w

Taking expectation E:[.] on both sides of the above expres-
sion, rearranging the terms and subsequently using (14), we
obtain the following:

F(0') < F(6") —a x |VF(8")]?, (36)
where
. do? . Vdo
o= —Cl——=—= —Co——
14 1K2P QK\/F )
(1 4B (1+7)LB LB*(1+7)?
P=AXN" "2 ) 272 ’
kL B2 (7L+>\>2
= — ,and,
2 i
- LB(’ny-i—)\) B(yL+ X)
DA A
LB%(1 i+~L+)) LB%(1
LB +v)l_ig+'y +A) (ﬁ+7)>. 37)

It is important to note that if o = 0, we get the same result
as FedProx.
Proof of Corollary 1: From Theorem 1, we have

o x [VF(@Y)|2 < F(8') - F(@")
Now, telescoping on both sides, i.e., considering
L allVE@)I? < S5 (F8Y) - F(@+)) leads to
the following
T-1 ) ) )
a) |[VF(@")|* < F(6°) - F(8")
t=0
Essentially, this above implies that 7 ZtT;Ol IVE(6Y)|? <
% < ae , where A = F(8°) — F(67). Hence, we have T' >

O A
tion rounds 7" is increased beyond this stipulated lower bound,

(38)

, 1.e., as the number of communica-

it is possible to obtain diminishing value of th:ol I VFN(HN‘E) 12,
which leads to diminishing difference between F(0") and
F(0'1).
Proof of Theorem 2: We now present the proof of conver-
gence of the NoROTA-FL algorithm when only a subset of
the devices participate in the FL process, i.e., K clients are
chosen randomly for federation. We use the local Lipschitz
continuity of F'(-) which states that

F(O'™) < F(0"™) + Lol — 6" |, (39
where L is the local Lipschitz constant. Considering Eg:|.]
on both sides of (39), we obtain

E[F(6")] < F(O'™) + ', (40)

where ¢* = E[L|6""" —6'*!||]. Evidently, we need to obtain
an upperbound on the expected norm of ¢! so that the expected

tEecrease and the rate of decrease in the loss function can be

uantified. Towards this, we use the bound L as given in [2],
i.e,

Lo < [VF(6)]+L (/6" —6'| + 6" —6']) (41)

Using the above result in ¢ = E [Lo||9~’5+1 - ét+1|\}, the

upperbound on the ¢! is given as

o <E[{IVF@")]+L (16"~ 6]+ 6 ~6]) }

>Lo

16" — 6" ] (42)

Using Lemma 2 in the context of F(6'), we obtain the
following

¢'<E [{IVF @) + Liwpll + L (16" — 0" + 16" —6']]) }
Hét+1 _ 0‘t+1‘|j|
< (IVF(@")] + LE|wpl + L]0 — 6| ) B0+ — 8"
+LE [0 — 6] — 6"
< (I9F@)1+ LEw | + 6" = 0')) B6™" — 0"
+LE [ (10— 87|+ 10" — 6]} 6" — 0] @3)
where (1) holds by the triangular inequality (applied as |ja—

b|| < |la—c|| + |lc — b|]). Rearranging the terms above, we see
that

¢ = (IVF(@")] + LE|w] + 2L]0"** - 6"])

E|6! — 6| + LE|| 6! — 0|2, (44)

We now consider upper-bounds for individual terms in
the above expression (44). First, we consider E|@*+! —



01| < \/E||0t+1 6'+1||2 and subsequently upper bound
{HOHI — 012 } as follows:

2

E [l|ét+1 _ ét-{—lHQ} -E gt+l

1 K
LS o,
Kk::l

Efl6; —

0] + [lw|I?

?r
>_-

2 <9t+1

1
< —Ei[||00
5 & k(1|07

ét+1, Wt>

p
— 0P+ [y |I®

1 o ~
5 ?Ek[ll(ﬁ’i+1 —0) — (0" —0")["] + [lw, |I*

< *E (16" —

017 + w1
@ K

(45)

where (1) follows from Jensen’s inequality. (2) is derived
using Lemma 4 in [3] and Eg: (07" — 6", wl) = 0. We
add and subtract 6% in (3) and finally we arrive at (4) since

It is important to note here also that if o = 0, we get the
same result as FedProx.
Finally, we prove the theorem by substituting the bounds from
(36) and (48) into (40).
A. Fading
Following the proof steps similar to Theorem 2, we have
Ex:[F(0")) < F(6") + ¢, (49)

The upperbound on the ¢ is given as

¢ <Ege |{IVFO)|+L (167" —0" +]16"" —6']) }

Lo

||ét+1 _ G_t+1||:|
< (IVF(@8")] + LEc: w5 + 2L]|6** — 6']))
Ex: 07" — 07| + LE. [0 — 6712, (50)

Further, Ex [||0~‘5+1 —6tt! ||2} can be upperbounded as

2
1 2 _
E; [BZJF ] — Qi+l [||9t+1 0t+1H ] o [Hl o Z 0t+1 wh _ gttt ]
~ _ 2 ~ t
Ese [0 0] < ZEall0f 6] + ||w;||2
< — Ece (1657 — 07117 + [[w|?
2 14+~ YL + A 2 Z KPR f
< 25 |(FE) 19A@l+ (P52 I EwIRe (RY =
5 /1 Iy < EEk[HGt“ 6P + [lwi|?
+ 7L+ @
< 2| (22) mivr@ni+ (2252 ﬂ W, I
6 K Z < *Ek[l\(G —0°)— (07 —0)[I"] + [lwgll
46) ® K
where (24) and Assumption 1 yields inequalities (5) and (6) < gE w167 — 0117 + lwh|? 1)

respectively. We complete the upperbound on ¢! by substitut-
ing and thereafter adjusting the bounds from (26) and (46) in
(44) and we get

q' <

I . 1+
IVF@)] + Liwt| + 2L {(

L+
(e )]

fg {(52) Bivr@+ (Z222) i} + |w;||]

%{(127) BIVF (@) + (”L“) n pn} + |w;|2}

(47)

: )BHVF(@ )|

+L

Now taking expectation Ey: [.] and using (16), we get

< 2 (e

( 3ffLBa

(yL 4+ M) /sVdo
KVP

. 2LB\/E\/30>

VKP
(WL +Nrvde ) o=
<1+ I > (2V2K +2)
ALB?kdo?
K2P

f\/&(fB+

iz x [[VEO)]"

(43)

where (1) follows from Jensen’s inequality. (2) is derived
using Lemma 4 in [3]. We add and subtract " in (3) and
finally we arrive at (4) because E [6,7'] = 6'F1.

- _ 2 N
Eoe |67 — 0P| < ZEAllof" — 6°1P) + 1w P

2 1+~ L+ A
< 2g, [( )nw @)+ (” )n f||} "
5) K iz

2 1+ L+ A
2 [( 7)J.rsnwwf)m (” )nw;«n} WP,
(6) K iz iz

(52)

where (24) and Assumption 1 yields (5) and (6) respectively.
We complete the upperbound on ¢ by substituting and there-
after adjusting the bounds from (26) and (52) in (44) and we
get

¢ <

IVE@Y] + Ljwb + 2L {(

(22 ]

:f}{(l:”)Buvmtn+(”L“>|| f||}+||w'}||]

2 1+ L+ 2
K{( M”)anwwu(” - )Hw;n} +||w§«||2]
(53)

1+ 5
T”) BIVF(@")]

+

+ L




Now taking expectation Ey: [.] and using (18), we have

qt S AB 1 +’Y+ w
o 3f\ﬁLBa 2LB/kVdo
KPRl P
2
LB? L+ d
. |4y g QLN VEV
- B 4LB?kdc? ~
(2V/ 2R +2) + 2L f“f o ] < |IVE@)].

(54)

Finally, we prove the theorem by substituting the bounds from
(36) and (54) into (49).

B. Computations to Compute Optimal \:

In discussions after theorem 1 and theorem 2, we alluded to
the constants aj,as and as and and by,b2 and bs, respectively,
for optimal A computation. The expressions to compute these
constants are as given below:

Lt
2K2p -
az = (LB*y + LB? +B+LB+,Y2L2BQ)K\/TD
+%+v3—1,
= (yL’B* +~yLB +~L B)I\Z%_i_WQL;[l;z;doQ

LB?%(1 2
+ (1+7)

5 + (1++)B,
b — LB*kdo? N 5V2LB*kdo® + 2BV kdo N 8LB’kdo® +B
' o2KeP keVEP K?P ’
by — (LB*y + LB? + B+ LB)Vkdo = L*B?*ykdo® = 14kdo?
° KVP K?P K2P
2
N 16LB*(1 + 'y)A ++2vLB +9(1 4 ) LB \A//ida
VK KVP
L BArv2  p
VK
LB*(1 L32 1 2(2V2K +2)
by = (14+7)LB + LB+’ +7) K+
2 K
N L3B*y%kdo®  (L?Bvy + ByL + L?B%y + L?B*~4*)Vkdo
K?2P K\VP
5L°B*~v*kdo®  16L°B*~v*Vk do- 55)
K2P K2\/P
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