## Supplementary for Robust Over-The-Air Federated Learning In Heterogeneous Networks

Zubair Shaban, Nazreen Shah, Ranjitha Prasad

I. DETAILED PROOFS OF KEY LEMMAS AND THEOREMS

**Proof of Lemma 1:** Adding  $\lambda \mathbf{I}_d$  on the LHS of  $\nabla^2 f_k(\boldsymbol{\theta}) \ge -\bar{L}\mathbf{I}_d$ , and using the definition of  $\bar{\mu}$ , we obtain

$$\nabla^2 f_k(\boldsymbol{\theta}) + \lambda \mathbf{I}_d \ge \bar{\mu} \mathbf{I}_d. \tag{1}$$

Using the expression for  $h_k(\boldsymbol{\theta}, \boldsymbol{\theta}^t)$  as given in definition 1, we have  $\nabla^2 h_k(\boldsymbol{\theta}, \boldsymbol{\theta}^t) = \nabla^2 f_k(\boldsymbol{\theta}) + \lambda \mathbf{I}_d$ . Substituting in the above, we have  $\nabla^2 h_k(\boldsymbol{\theta}, \boldsymbol{\theta}^t) \geq \bar{\mu} \mathbf{I}_d$ , which implies that  $h_k(\boldsymbol{\theta}, \boldsymbol{\theta}^t)$  is  $\bar{\mu}$ -strongly convex for all t.

**Proof of Lemma 2:** Using the reverse triangular inequality for two vectors  $\theta^t$  and  $\tilde{\theta}^t$ , and Lipschitz smoothness, we have:

$$\|\nabla f(\boldsymbol{\theta}^t)\| - \|\nabla f(\tilde{\boldsymbol{\theta}}^t)\| \le \|\nabla f(\boldsymbol{\theta}^t) - \nabla f(\tilde{\boldsymbol{\theta}}^t)\|$$

$$\le L\|\boldsymbol{\theta}^t - \tilde{\boldsymbol{\theta}}^t\|.$$
 (2)

Since  $\mathbf{w}^t = \tilde{\boldsymbol{\theta}}^t - \boldsymbol{\theta}^t$ , we have  $\|\nabla f(\boldsymbol{\theta}^t)\| \le \|\nabla f(\tilde{\boldsymbol{\theta}}^t)\| + L\|\mathbf{w}^t\|$ . The same result is obtained (as an approximation) by using Taylor series expansion as follows:

$$f(\boldsymbol{\theta}^t) = f(\tilde{\boldsymbol{\theta}}^t - \mathbf{w}^t) \approx f(\tilde{\boldsymbol{\theta}}^t) - \mathbf{w}^t \nabla f(\tilde{\boldsymbol{\theta}}^t). \tag{3}$$

Differentiating both sides of the above equation and considering the norm, we have

$$\|\nabla f(\boldsymbol{\theta}^t)\| \lessapprox \|\nabla f(\tilde{\boldsymbol{\theta}}^t)\| + \|\mathbf{w}^t\| \|\nabla^2 f(\tilde{\boldsymbol{\theta}}^t)\|$$

$$\le \|\nabla f(\tilde{\boldsymbol{\theta}}^t)\| + \|\mathbf{w}^t\| L,$$
(4)

where the last step holds by the spectral norm property, i,e.,  $\|\nabla^2 f(\tilde{\boldsymbol{\theta}}^t)\| \leq L$  if f satisfies  $\|\nabla f(x) - \nabla f(y)\| \leq L \|x - y\|$ .

**Proof of Lemma 3:** The local objective function, as given in P2 is defined as follows,

$$h_k(\boldsymbol{\theta}_k^{t+1}; \tilde{\boldsymbol{\theta}}^t) = f_k(\boldsymbol{\theta}_k^{t+1}) + \frac{\lambda}{2} \|\boldsymbol{\theta}_k^{t+1} - \tilde{\boldsymbol{\theta}}^t\|^2.$$
 (5)

where  $\tilde{\boldsymbol{\theta}}^t$  is the available aggregated global model from the t-th aggregation epoch. From (5) in the main manuscript, we have the noisy FedAvg decoding rule given as  $\tilde{\boldsymbol{\theta}}^t = \frac{1}{K} \sum_{k=1}^K \boldsymbol{\theta}_k^t + \mathbf{w}^t$ . Differentiating (5) with respect to  $\boldsymbol{\theta}_k^{t+1}$ , we obtain

$$\nabla h_k(\boldsymbol{\theta}_k^{t+1}; \tilde{\boldsymbol{\theta}}^t) = \nabla f_k(\boldsymbol{\theta}_k^{t+1}) + \lambda \left[ \boldsymbol{\theta}_k^{t+1} - \tilde{\boldsymbol{\theta}}^t \right]. \tag{6}$$

We introduce the noiseless parameter update as  $\boldsymbol{\theta}^t = \frac{1}{K} \sum_{k=1}^K \boldsymbol{\theta}_k^t$ , which leads to  $\tilde{\boldsymbol{\theta}}^t = \boldsymbol{\theta}^t + \mathbf{w}^t$ . Considering  $\ell_2$  norm of both the sides of the above expression, we have

$$\|\nabla h_k(\boldsymbol{\theta}_k^{t+1}; \tilde{\boldsymbol{\theta}}^t)\| = \|\nabla f_k(\boldsymbol{\theta}_k^{t+1}) + \lambda \left(\boldsymbol{\theta}_k^{t+1} - \boldsymbol{\theta}^t\right) - \lambda \mathbf{w}^t\|.$$
(7)

Applying triangle inequality to the above, we obtain

$$\|\nabla h_k(\boldsymbol{\theta}_k^{t+1}; \tilde{\boldsymbol{\theta}}^t)\| \le \|\nabla f_k(\boldsymbol{\theta}_k^{t+1}) + \lambda \left(\boldsymbol{\theta}_k^{t+1} - \boldsymbol{\theta}^t\right)\| + \lambda \|\mathbf{w}^t\|,$$
  
$$\le \|\nabla h_k(\boldsymbol{\theta}_k^{t+1}; \boldsymbol{\theta}^t)\| + \lambda \|\mathbf{w}^t\|. \tag{8}$$

Using the notion of inexactness as mentioned in definition 1, we have  $\|\nabla h_k(\boldsymbol{\theta}_k^{t+1}; \boldsymbol{\theta}^t)\| \leq \gamma \|\nabla f_k(\boldsymbol{\theta}^t)\|$ , the expression in (8) can be rewritten as

$$\|\nabla h_k(\boldsymbol{\theta}_k^{t+1}; \tilde{\boldsymbol{\theta}}^t)\| \le \gamma \|\nabla f_k(\boldsymbol{\theta}^t)\| + \lambda \|\mathbf{w}^t\|$$
 (9)

Finally, using Lemma 2, we have

$$\|\nabla h_k(\boldsymbol{\theta}_k^{t+1}; \tilde{\boldsymbol{\theta}}^t)\| \le \gamma \|\nabla f_k(\tilde{\boldsymbol{\theta}}^t)\| + \gamma L \|\mathbf{w}^t\| + \lambda \|\mathbf{w}^t\|$$

$$\le \gamma \|\nabla f_k(\tilde{\boldsymbol{\theta}}^t)\| + (\gamma L + \lambda) \|\mathbf{w}^t\|$$
 (10)

Proof of Lemma 4: From Assumption 4, we have

$$\frac{1}{p^{t}} \leq \frac{1}{P} \max_{k} \mathbb{E}_{k}[\|\nabla f_{j_{k}^{t}}(\tilde{\boldsymbol{\theta}}^{t})\|^{2}]$$

$$\leq \frac{1}{P} \kappa \mathbb{E}_{k} \left[\|\nabla f_{k}(\tilde{\boldsymbol{\theta}}^{t})\|^{2}\right]$$

$$\leq \frac{1}{P} \kappa B^{2} \|\nabla F(\tilde{\boldsymbol{\theta}}^{t})\|^{2}, \tag{11}$$

where  $\kappa$  is a constant. Note that in COTAF,  $\kappa$  is a function of the number of SGD epochs and learning rate [1]. Further, the last inequality follows from Assumption 1.

Since in the case of full participation,  $\mathbf{w}^t \sim \mathcal{N}(0, \frac{\sigma^2}{K^2 p^t} \mathbf{I}_d)$ , therefore

$$\mathbb{E}_{\mathbf{w}^t} \left[ \|\mathbf{w}^t\|^2 \right] = \frac{d\sigma^2}{K^2 p^t}.$$
 (12)

Then, using Lemma 4, we have

$$\mathbb{E}_{\mathbf{w}^t} \left[ \|\mathbf{w}^t\|^2 \right] = \frac{d\sigma^2}{K^2 p^t} \le \frac{\kappa d\sigma^2 B^2}{K^2 P} \|\nabla F(\tilde{\boldsymbol{\theta}}^t)\|^2. \tag{13}$$

Using Jensen's inequality, we can rewrite the above as

$$\mathbb{E}_{\mathbf{w}^{t}}\left[\|\mathbf{w}^{t}\|\right] \leq \sqrt{\mathbb{E}_{\mathbf{w}^{t}}\left[\|\mathbf{w}^{t}\|^{2}\right]} \leq \frac{\sqrt{\kappa}\sqrt{d}\sigma B}{K\sqrt{P}}\|\nabla F(\tilde{\boldsymbol{\theta}}^{t})\| \tag{14}$$

Furthermore, in partial participation case,  $\mathbf{w}_p^t \sim \mathcal{N}(0, \frac{\sigma^2}{\hat{K}^2 v^t} \mathbf{I}_d)$ , hence

$$\mathbb{E}_{\mathbf{w}_p^t} \left[ \|\mathbf{w}_p^t\|^2 \right] = \frac{d\sigma^2}{\hat{K}^2 n^t}.$$
 (15)

Then using Lemma 4 and Jensen's inequality, we have

$$\mathbb{E}_{\mathbf{w}_{p}^{t}}\left[\|\mathbf{w}_{p}^{t}\|\right] \leq \sqrt{\mathbb{E}_{\mathbf{w}_{p}^{t}}\left[\|\mathbf{w}_{p}^{t}\|^{2}\right]} \leq \frac{\sqrt{\kappa\sqrt{d}\sigma B}}{\hat{K}\sqrt{P}}\|\nabla F(\tilde{\boldsymbol{\theta}}^{t})\|$$
(16)

<sup>†</sup> Indraprastha Institute of Information Technology Delhi, New Delhi

<sup>\*</sup> Equal Contribution.

Similarly, for fading case,  $\mathbf{w}_f^t \sim \mathcal{N}(0, \frac{\sigma^2}{|\mathcal{K}^t|^2 h_{min}^2 p^t} \mathbf{I}_d)$ , there-

$$\mathbb{E}_{\mathbf{w}_{f}^{t}}\left[\|\mathbf{w}_{f}^{t}\|^{2}\right] = \frac{d\sigma^{2}}{|\mathcal{K}^{t}|^{2}h_{\min}^{2}p^{t}}.$$
(17)

Then using Lemma 4 and Jensen's inequality, we have

$$\mathbb{E}_{\mathbf{w}_{f}^{t}}\left[\|\mathbf{w}_{f}^{t}\|\right] \leq \sqrt{\mathbb{E}_{\mathbf{w}_{f}^{t}}\left[\|\mathbf{w}_{f}^{t}\|^{2}\right]} \leq \frac{\sqrt{\kappa}\sqrt{d\sigma}B}{|\mathcal{K}^{t}|h_{min}\sqrt{P}}\|\nabla F(\tilde{\boldsymbol{\theta}}^{t})\|$$
(18)

**Proof of Theorem 1:** Consider the local objective function in (15) of the main manuscript as follows,

$$h_k(\boldsymbol{\theta}_k^{t+1}; \tilde{\boldsymbol{\theta}}^t) = f_k(\boldsymbol{\theta}_k^{t+1}) + \frac{\lambda}{2} \|\boldsymbol{\theta}_k^{t+1} - \tilde{\boldsymbol{\theta}}^t\|^2.$$
 (19)

Denoting  $\bar{\theta}^{t+1} = \mathbb{E}_k[\theta_k^{t+1}]$  and differentiating the above equation and taking the expectation  $\mathbb{E}_k[\cdot]$ , we obtain the following:

$$\bar{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^t = \frac{-1}{\lambda} \mathbb{E}_k \left[ \nabla f_k(\boldsymbol{\theta}_k^{t+1}) \right] + \frac{1}{\lambda} \mathbb{E}_k \left[ \nabla h_k(\boldsymbol{\theta}_k^{t+1}; \tilde{\boldsymbol{\theta}}^t) \right] + \mathbf{w}^t.$$
(20)

where  $\mathbb{E}_k[\tilde{\boldsymbol{\theta}}^t] = \boldsymbol{\theta}^t + \mathbf{w}^t$ .

From Lemma 1, we know  $h_k(\cdot,\cdot)$  is  $\bar{\mu}$ -strongly convex. Let  $\boldsymbol{\theta}_k^{*,t+1} = \arg\min_{\boldsymbol{\theta}} \nabla h_k(\boldsymbol{\theta}; \boldsymbol{\theta}^t)$ . Using  $\bar{\mu}$ -strong convexity of  $h_k(\cdot,\cdot)$  and (9) we obtain

$$\|\boldsymbol{\theta}_k^{*,t+1} - \boldsymbol{\theta}_k^{t+1}\| \le \frac{\gamma}{\bar{\mu}} \|\nabla f_k(\boldsymbol{\theta}^t)\| + \frac{\lambda}{\bar{\mu}} \|\mathbf{w}^t\|.$$
 (21)

Directly from  $\bar{\mu}$ -strong convexity of  $h_k(\cdot)$  we have that

$$\|\boldsymbol{\theta}_k^{*,t+1} - \tilde{\boldsymbol{\theta}}^t\| \le \frac{1}{\bar{\mu}} \|\nabla f_k(\tilde{\boldsymbol{\theta}}^t)\|. \tag{22}$$

Combining (21) and (22) and using triangle inequality we

$$\|\boldsymbol{\theta}_k^{t+1} - \tilde{\boldsymbol{\theta}}^t\| \le \frac{\gamma}{\bar{\mu}} \|\nabla f_k(\boldsymbol{\theta}^t)\| + \frac{1}{\bar{\mu}} \|\nabla f_k(\tilde{\boldsymbol{\theta}}^t)\| + \frac{\lambda}{\bar{\mu}} \|\mathbf{w}^t\|.$$
(23)

Substituting for  $\|\nabla f_k(\boldsymbol{\theta}^t)\|$  from Lemma 2, we obtain

$$\|\boldsymbol{\theta}_k^{t+1} - \tilde{\boldsymbol{\theta}}^t\| \le \frac{1+\gamma}{\bar{\mu}} \|\nabla f_k(\tilde{\boldsymbol{\theta}}^t)\| + \frac{\gamma L + \lambda}{\bar{\mu}} \|\mathbf{w}^t\|$$
 (24)

Now we bound  $\|\bar{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^t\|$  from (20) as follows.

$$\|\bar{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^t\| = \|\mathbb{E}_k[\boldsymbol{\theta}_k^{t+1}] - \mathbb{E}_k[\tilde{\boldsymbol{\theta}}^t] + \mathbf{w}^t\|$$

$$\leq \mathbb{E}_k\|\boldsymbol{\theta}_k^{t+1} - \tilde{\boldsymbol{\theta}}^t\| + \|\mathbf{w}^t\|, \tag{25}$$

where the last inequality is due to triangular inequality. Substituting the upper bound on  $\|\boldsymbol{\theta}_k^{t+1} - \tilde{\boldsymbol{\theta}}^t\|$  from (24), we obtain the following:

$$\mathbb{E}_{k} \|\boldsymbol{\theta}_{k}^{t+1} - \tilde{\boldsymbol{\theta}}^{t}\| \leq \frac{1+\gamma}{\bar{\mu}} \mathbb{E}_{k} [\|\nabla f_{k}(\tilde{\boldsymbol{\theta}}^{t})\|] + \left(\frac{\gamma L + \lambda}{\bar{\mu}}\right) \|\mathbf{w}^{t}\| \\
\leq \left(\frac{1+\gamma}{\bar{\mu}}\right) B \|\nabla F(\tilde{\boldsymbol{\theta}}^{t})\| + \left(\frac{\gamma L + \lambda}{\bar{\mu}}\right) \|\mathbf{w}^{t}\|. \tag{26}$$

The last inequality is due to the bounded local dissimilarity assumption, i.e.,  $\mathbb{E}_k[\|\nabla f_k(\tilde{\boldsymbol{\theta}})\|] \leq \sqrt{\|\mathbb{E}_k\|\nabla f_k(\tilde{\boldsymbol{\theta}})\|^2}$  $\|\nabla F(\tilde{\boldsymbol{\theta}})\|B$ . After substituting (26) in (25),we have

$$\|\bar{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^{t}\| = \left(\frac{1+\gamma}{\bar{\mu}}\right) B \|\nabla F(\tilde{\boldsymbol{\theta}}^{t})\|$$

$$+ \left(\frac{\gamma L + \lambda}{\bar{\mu}}\right) \|\mathbf{w}^{t}\| + \|\mathbf{w}^{t}\|$$

$$= \left(\frac{1+\gamma}{\bar{\mu}}\right) B \|\nabla F(\tilde{\boldsymbol{\theta}}^{t})\|$$

$$+ \left(\frac{\bar{\mu} + \gamma L + \lambda}{\bar{\mu}}\right) \|\mathbf{w}^{t}\|.$$
(27)

We simplify (20) as follows:

$$\bar{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^{t} = \frac{-1}{\lambda} \mathbb{E}_{k} \left[ \nabla f_{k}(\boldsymbol{\theta}_{k}^{t+1}) \right] + \frac{1}{\lambda} \mathbb{E}_{k} \left[ \nabla h_{k}(\boldsymbol{\theta}_{k}^{t+1}; \tilde{\boldsymbol{\theta}}^{t}) \right] + \mathbf{w}^{t}$$

$$= \frac{-1}{\lambda} \left\{ \mathbb{E}_{k} \left[ \nabla f_{k}(\tilde{\boldsymbol{\theta}}^{t}) \right] \right.$$

$$+ \mathbb{E}_{k} \left[ \nabla f_{k}(\boldsymbol{\theta}_{k}^{t+1}) - \nabla h_{k}(\boldsymbol{\theta}_{k}^{t+1}; \tilde{\boldsymbol{\theta}}^{t}) - \nabla f_{k}(\tilde{\boldsymbol{\theta}}^{t}) \right] \right\} + \mathbf{w}^{t}.$$
(28)

We define,

 $\mathbb{E}_k \left[ \nabla f_k(\boldsymbol{\theta}_k^{t+1}) - \nabla f_k(\tilde{\boldsymbol{\theta}}^t) - \nabla h_k(\boldsymbol{\theta}_k^{t+1}; \tilde{\boldsymbol{\theta}}^t) \right],$ which is the second term on the right hand side of the expression above. Since  $\mathbb{E}_k \left[ \nabla f_k(\tilde{\boldsymbol{\theta}}^t) \right] = \nabla F(\tilde{\boldsymbol{\theta}}^t)$ , we have

$$\bar{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^t = \mathbb{E}_k[\boldsymbol{\theta}_k^{t+1}] - \boldsymbol{\theta}^t = \frac{-1}{\lambda} \left( \nabla F(\tilde{\boldsymbol{\theta}}^t) + \mathbf{m}^{t+1} \right) + \mathbf{w}^t$$
(29)

Now we derive upper bounds for the two terms on the right hand side above. To obtain an upperbound on the norm of  $\mathbf{m}^{t+1}$ , we use the L-Lipschitz smoothness assumption, triangle inequality, (26) and Lemma 3 to obtain the following:

$$\|\mathbf{m}^{t+1}\| \leq \mathbb{E}_{k} \left[ L \|\boldsymbol{\theta}_{k}^{t+1} - \tilde{\boldsymbol{\theta}}^{t}\| \right] + \mathbb{E}_{k} \|\nabla h_{k}(\boldsymbol{\theta}_{k}^{t+1}; \tilde{\boldsymbol{\theta}}^{t})\|$$

$$\leq L \left[ \left( \frac{1+\gamma}{\bar{\mu}} \right) B \|\nabla F(\tilde{\boldsymbol{\theta}}^{t})\| + \left( \frac{\gamma L + \lambda}{\bar{\mu}} \right) \|\mathbf{w}^{t}\| \right]$$

$$+ \gamma \mathbb{E}_{k} [\|\nabla f_{k}(\tilde{\boldsymbol{\theta}}^{t})\|] + (\gamma L + \lambda) \|\mathbf{w}^{t}\|. \tag{30}$$

Further, using Assumption 1 to simplify  $\mathbb{E}_k[\|\nabla f_k(\boldsymbol{\theta}^t)\|]$  in the above expression, we have

$$\|\mathbf{m}^{t+1}\| \le \left[ LB\left(\frac{1+\gamma}{\bar{\mu}}\right) + \gamma B \right] \|\nabla F(\tilde{\boldsymbol{\theta}}^t)\|$$

$$+ \left[ L\left(\frac{\gamma L + \lambda}{\bar{\mu}}\right) + (\gamma L + \lambda) \right] \|\mathbf{w}^t\|.$$
 (31)

Using Cauchy-Schwartz inequality, we know that  $\frac{-1}{\lambda}\langle\nabla F(\tilde{\boldsymbol{\theta}}^t),\mathbf{m}^{t+1}\rangle \leq \frac{1}{\lambda}\|\nabla F(\tilde{\boldsymbol{\theta}}^t)\|\|\mathbf{m}^{t+1}\|$ . Hence, it

$$\leq \frac{1+\gamma}{\bar{\mu}} \mathbb{E}_{k}[\|\nabla f_{k}(\boldsymbol{\theta}^{t})\|] + \left(\frac{\gamma L + \lambda}{\bar{\mu}}\right) \|\mathbf{w}^{t}\| -\frac{1}{\lambda} \langle \nabla F(\tilde{\boldsymbol{\theta}}^{t}), \mathbf{m}^{t+1} \rangle \leq \frac{1}{\lambda} \left[ LB\left(\frac{1+\gamma}{\bar{\mu}}\right) + \gamma B \right] \|\nabla F(\tilde{\boldsymbol{\theta}}^{t})\|^{2} \\
\leq \left(\frac{1+\gamma}{\bar{\mu}}\right) B\|\nabla F(\tilde{\boldsymbol{\theta}}^{t})\| + \left(\frac{\gamma L + \lambda}{\bar{\mu}}\right) \|\mathbf{w}^{t}\|. + \frac{1}{\lambda} \left[ L\left(\frac{\gamma L + \lambda}{\bar{\mu}}\right) + (\gamma L + \lambda) \right] \|\mathbf{w}^{t}\| \|\nabla F(\tilde{\boldsymbol{\theta}}^{t})\|. \tag{32}$$

Using L-Lipschitz smoothness of  $F(\cdot)$  and Cauchy Schwartz inequality, we have

$$F(\bar{\boldsymbol{\theta}}^{t+1}) - F(\tilde{\boldsymbol{\theta}}^{t}) \le \langle \nabla F(\tilde{\boldsymbol{\theta}}^{t}), \bar{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^{t} \rangle - \langle \nabla F(\tilde{\boldsymbol{\theta}}^{t}), \mathbf{w}^{t} \rangle + \frac{L}{2} \|\bar{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^{t}\|^{2} + \frac{L}{2} \|\mathbf{w}^{t}\|^{2} - L\langle \bar{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^{t}, \mathbf{w}^{t} \rangle$$
(33)

Substituting for  $\bar{\theta}^{t+1} - \theta^t$  from (29), we obtain

$$F(\bar{\boldsymbol{\theta}}^{t+1}) - F(\tilde{\boldsymbol{\theta}}^{t}) \leq \nabla F(\tilde{\boldsymbol{\theta}}^{t})^{T} \left[ \frac{-1}{\lambda} \left( \nabla F(\tilde{\boldsymbol{\theta}}^{t}) + \mathbf{m}^{t+1} \right) \right]$$

$$+ \frac{L}{2} \|\bar{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^{t}\|^{2} + \frac{L}{2} \|\mathbf{w}^{t}\|^{2} - L \|\bar{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^{t}\| \|\mathbf{w}^{t}\|$$
(34)

Substituting for  $\|\bar{\theta}^{t+1} - \theta^t\|$  as derived in (27), we obtain

$$F(\bar{\boldsymbol{\theta}}^{t+1}) - F(\tilde{\boldsymbol{\theta}}^t) \leq \frac{-1}{\lambda} \|\nabla F(\tilde{\boldsymbol{\theta}}^t)\|^2 + \frac{L}{2} \left\{ \left( \frac{1+\gamma}{\bar{\mu}} \right) B \|\nabla F(\tilde{\boldsymbol{\theta}}^t)\| \right. \\ \left. + \left( \frac{\bar{\mu} + \gamma L + \lambda}{\bar{\mu}} \right) \|\mathbf{w}^t\| \right\}^2 + \frac{1}{\lambda} \left[ L B \left( \frac{1+\gamma}{\bar{\mu}} \right) + \gamma B \right] \|\nabla F(\tilde{\boldsymbol{\theta}}^t)\|^2 \\ \left. + \frac{1}{\lambda} \left[ L \left( \frac{\gamma L + \lambda}{\bar{\mu}} \right) + (\gamma L + \lambda) \right] \|\mathbf{w}^t\| \|\nabla F(\tilde{\boldsymbol{\theta}}^t)\| \right. \\ \left. + \frac{L}{2} \|\mathbf{w}^t\|^2 - L \left\{ \left( \frac{1+\gamma}{\bar{\mu}} \right) B \|\nabla F(\tilde{\boldsymbol{\theta}}^t)\| + \left( \frac{\bar{\mu} + \gamma L + \lambda}{\bar{\mu}} \right) \|\mathbf{w}^t\| \right\} \|\mathbf{w}^t\| \right\} \|\mathbf{w}^t\| decrease and the rate of decrease in the loss function can be quantified. Towards this, we use the bound  $L_0$  as given in [2],$$

Taking expectation  $\mathbb{E}_{\mathbf{w}^t}[.]$  on both sides of the above expression, rearranging the terms and subsequently using (14), we obtain the following:

$$F(\bar{\boldsymbol{\theta}}^{t+1}) \le F(\tilde{\boldsymbol{\theta}}^t) - \alpha \times \|\nabla F(\tilde{\boldsymbol{\theta}}^t)\|^2, \tag{36}$$

where

$$\alpha = \left(\rho - c_1 \frac{d\sigma^2}{K^2 P} - c_2 \frac{\sqrt{d}\sigma}{K\sqrt{P}}\right),$$

$$\rho = \left(\frac{1}{\lambda} - \frac{\gamma B}{\lambda} - \frac{(1+\gamma)LB}{\bar{\mu}\lambda} - \frac{LB^2(1+\gamma)^2}{2\bar{\mu}^2}\right),$$

$$c_1 = \frac{\kappa LB^2}{2} \left(\frac{\gamma L + \lambda}{\bar{\mu}}\right)^2, \text{ and,}$$

$$c_2 = \sqrt{\kappa} \left(\frac{LB(\gamma L + \lambda)}{\bar{\mu}\lambda} + \frac{B(\gamma L + \lambda)}{\lambda} + \frac{LB^2(1+\gamma)(\bar{\mu} + \gamma L + \lambda)}{\bar{\mu}^2} - \frac{LB^2(1+\gamma)}{\bar{\mu}}\right).$$
(37)

It is important to note that if  $\sigma = 0$ , we get the same result as FedProx.

**Proof of Corollary 1**: From Theorem 1, we have

$$\alpha \times \|\nabla F(\tilde{\boldsymbol{\theta}}^t)\|^2 \leq F(\tilde{\boldsymbol{\theta}}^t) - F(\bar{\boldsymbol{\theta}}^{t+1})$$

Now, telescoping on both sides, i.e., considering  $\textstyle\sum_{t=0}^{T-1} \alpha \|\nabla F(\tilde{\boldsymbol{\theta}}^t)\|^2 \leq \sum_{t=0}^{T-1} \left(F(\tilde{\boldsymbol{\theta}}^t) - F(\tilde{\boldsymbol{\theta}}^{t+1})\right) \text{ leads to}$ the following

$$\alpha \sum_{t=0}^{T-1} \|\nabla F(\tilde{\boldsymbol{\theta}}^t)\|^2 \le F(\tilde{\boldsymbol{\theta}}^0) - F(\tilde{\boldsymbol{\theta}}^T)$$
 (38)

Essentially, this above implies that  $\frac{\alpha}{T} \sum_{t=0}^{T-1} \|\nabla F(\tilde{\theta}^t)\|^2 \le$  $\frac{\Delta}{T} \leq \alpha \epsilon \text{ , where } \Delta = F(\tilde{\boldsymbol{\theta}}^0) - F(\tilde{\boldsymbol{\theta}}^T) \text{. Hence, we have } T \geq \mathcal{O}\left(\frac{\Delta}{\left(\rho - c_1 \frac{d\sigma^2}{K^2 P} - c_2 \frac{\sqrt{d}\sigma}{K\sqrt{P}}\right)\epsilon}\right), \text{ i.e., as the number of communication}$ tion rounds T is increased beyond this stipulated lower bound, it is possible to obtain diminishing value of  $\sum_{t=0}^{T-1} \|\nabla F(\tilde{\theta}^t)\|^2$ , which leads to diminishing difference between  $F(\tilde{m{ heta}}^t)$  and  $F(\bar{\boldsymbol{\theta}}^{t+1}).$ 

Proof of Theorem 2: We now present the proof of convergence of the NoROTA-FL algorithm when only a subset of the devices participate in the FL process, i.e.,  $\hat{K}$  clients are chosen randomly for federation. We use the local Lipschitz continuity of  $F(\cdot)$  which states that

$$F(\tilde{\boldsymbol{\theta}}^{t+1}) \le F(\bar{\boldsymbol{\theta}}^{t+1}) + L_0 \|\tilde{\boldsymbol{\theta}}^{t+1} - \bar{\boldsymbol{\theta}}^{t+1}\|,$$
 (39)

where  $L_0$  is the local Lipschitz constant. Considering  $\mathbb{E}_{S^t}[.]$ on both sides of (39), we obtain

$$\mathbb{E}[F(\tilde{\boldsymbol{\theta}}^{t+1})] \le F(\bar{\boldsymbol{\theta}}^{t+1}) + q^t, \tag{40}$$

where  $q^t = \mathbb{E}[L_0 || \tilde{\boldsymbol{\theta}}^{t+1} - \bar{\boldsymbol{\theta}}^{t+1} ||]$ . Evidently, we need to obtain an upperbound on the expected norm of  $q^t$  so that the expected quantified. Towards this, we use the bound  $L_0$  as given in [2],

$$L_0 \le \|\nabla F(\boldsymbol{\theta}^t)\| + L\left(\|\bar{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^t\| + \|\tilde{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^t\|\right)$$
 (41)

Using the above result in  $q^t = \mathbb{E}\left[L_0\|\tilde{\boldsymbol{\theta}}^{t+1} - \bar{\boldsymbol{\theta}}^{t+1}\|\right]$ , the upperbound on the  $q^t$  is given as

$$q^{t} \leq \mathbb{E}\left[\underbrace{\left\{\|\nabla F(\boldsymbol{\theta}^{t})\| + L\left(\|\bar{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^{t}\| + \|\tilde{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^{t}\|\right)\right\}}_{\geq L_{0}}$$

$$\|\tilde{\boldsymbol{\theta}}^{t+1} - \bar{\boldsymbol{\theta}}^{t+1}\|\right] \tag{42}$$

Using Lemma 2 in the context of  $F(\theta^t)$ , we obtain the following

$$q^{t} \leq \mathbb{E}\left[\left\{\left\|\nabla F(\tilde{\boldsymbol{\theta}}^{t})\right\| + L\left\|\mathbf{w}_{p}^{t}\right\| + L\left(\left\|\bar{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^{t}\right\| + \left\|\tilde{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^{t}\right\|\right)\right\}$$

$$\|\tilde{\boldsymbol{\theta}}^{t+1} - \bar{\boldsymbol{\theta}}^{t+1}\|\right]$$

$$\leq \left(\left\|\nabla F(\tilde{\boldsymbol{\theta}}^{t})\right\| + L\mathbb{E}\|\mathbf{w}_{p}^{t}\| + L\|\bar{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^{t}\|\right)\mathbb{E}\|\tilde{\boldsymbol{\theta}}^{t+1} - \bar{\boldsymbol{\theta}}^{t+1}\|$$

$$+ L\mathbb{E}\left[\left\|\tilde{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^{t}\right\|\|\tilde{\boldsymbol{\theta}}^{t+1} - \bar{\boldsymbol{\theta}}^{t+1}\|\right]$$

$$\leq \left(\left\|\nabla F(\tilde{\boldsymbol{\theta}}^{t})\right\| + L\mathbb{E}\|\mathbf{w}_{p}^{t}\| + L\|\bar{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^{t}\|\right)\mathbb{E}\|\tilde{\boldsymbol{\theta}}^{t+1} - \bar{\boldsymbol{\theta}}^{t+1}\|$$

$$+ L\mathbb{E}\left[\left(\|\tilde{\boldsymbol{\theta}}^{t+1} - \bar{\boldsymbol{\theta}}^{t+1}\| + \|\bar{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^{t}\|\right)\|\tilde{\boldsymbol{\theta}}^{t+1} - \bar{\boldsymbol{\theta}}^{t+1}\|\right]$$

$$(43)$$

where (1) holds by the triangular inequality (applied as ||a- $|b|| \le ||a-c|| + ||c-b||$ ). Rearranging the terms above, we see

$$q^{t} = \left( \|\nabla F(\tilde{\boldsymbol{\theta}}^{t})\| + L\mathbb{E} \|\mathbf{w}_{p}^{t}\| + 2L\|\bar{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^{t}\| \right)$$

$$\mathbb{E} \|\tilde{\boldsymbol{\theta}}^{t+1} - \bar{\boldsymbol{\theta}}^{t+1}\| + L\mathbb{E} \|\tilde{\boldsymbol{\theta}}^{t+1} - \bar{\boldsymbol{\theta}}^{t+1}\|^{2}. \tag{44}$$

We now consider upper-bounds for individual terms in the above expression (44). First, we consider  $\mathbb{E}\|\tilde{\boldsymbol{\theta}}^{t+1}$  –

 $ar{ heta}^{t+1} \| \leq \sqrt{\mathbb{E} \| \tilde{ heta}^{t+1} - ar{ heta}^{t+1} \|^2}$  and subsequently upper bound  $\mathbb{E} \left[ \| \tilde{ heta}^{t+1} - ar{ heta}^{t+1} \|^2 \right]$  as follows:

$$\mathbb{E}\left[\|\tilde{\boldsymbol{\theta}}^{t+1} - \bar{\boldsymbol{\theta}}^{t+1}\|^{2}\right] = \mathbb{E}\left[\left\|\frac{1}{\hat{K}}\sum_{k=1}^{\hat{K}}\boldsymbol{\theta}_{k}^{t+1} + \mathbf{w}_{p}^{t} - \bar{\boldsymbol{\theta}}^{t+1}\right\|^{2}\right] \\
\leq \frac{1}{(\hat{K})^{2}}\sum_{k=1}^{\hat{K}}\mathbb{E}[\|\boldsymbol{\theta}_{k}^{t+1} - \bar{\boldsymbol{\theta}}^{t+1}\|^{2}] + \|\mathbf{w}_{p}^{t}\|^{2} \\
+ 2\mathbb{E}\langle\boldsymbol{\theta}_{k}^{t+1} - \bar{\boldsymbol{\theta}}^{t+1}, \mathbf{w}_{p}^{t}\rangle \\
\leq \frac{1}{\hat{K}}\mathbb{E}_{k}[\|\boldsymbol{\theta}_{k}^{t+1} - \bar{\boldsymbol{\theta}}^{t+1}\|^{2}] + \|\mathbf{w}_{p}^{t}\|^{2} \\
\leq \frac{1}{\hat{K}}\mathbb{E}_{k}[\|(\boldsymbol{\theta}_{k}^{t+1} - \tilde{\boldsymbol{\theta}}^{t}) - (\bar{\boldsymbol{\theta}}^{t+1} - \tilde{\boldsymbol{\theta}}^{t})\|^{2}] + \|\mathbf{w}_{p}^{t}\|^{2} \\
\leq \frac{2}{\hat{K}}\mathbb{E}_{k}[\|(\boldsymbol{\theta}_{k}^{t+1} - \tilde{\boldsymbol{\theta}}^{t})\|^{2}] + \|\mathbf{w}_{p}^{t}\|^{2} \tag{45}$$

where (1) follows from Jensen's inequality. (2) is derived using Lemma 4 in [3] and  $\mathbb{E}_{S^t}\langle\boldsymbol{\theta}_k^{t+1}-\bar{\boldsymbol{\theta}}^{t+1},\mathbf{w}_p^t\rangle=0$ . We add and subtract  $\tilde{\boldsymbol{\theta}}^t$  in (3) and finally we arrive at (4) since  $\mathbb{E}_k\left[\boldsymbol{\theta}_k^{t+1}\right]=\bar{\boldsymbol{\theta}}^{t+1}$ .

$$\mathbb{E}_{S^{t}} \left[ \|\tilde{\boldsymbol{\theta}}^{t+1} - \bar{\boldsymbol{\theta}}^{t+1}\|^{2} \right] \leq \frac{2}{\hat{K}} \mathbb{E}_{k} [\|\boldsymbol{\theta}_{k}^{t+1} - \tilde{\boldsymbol{\theta}}^{t}\|^{2}] + \|\mathbf{w}_{p}^{t}\|^{2} \\
\leq \frac{2}{\hat{K}} \mathbb{E}_{k} \left[ \left( \frac{1+\gamma}{\bar{\mu}} \right) \|\nabla f_{k}(\tilde{\boldsymbol{\theta}}^{t})\| + \left( \frac{\gamma L + \lambda}{\bar{\mu}} \right) \|\mathbf{w}^{t}\| \right]^{2} + \|\mathbf{w}_{p}^{t}\|^{2} \frac{1}{(\hat{K})^{2}} \sum_{k=1}^{\hat{K}} \mathbb{E}_{K^{t}} [\|\boldsymbol{\theta}_{k}^{t+1} - \bar{\boldsymbol{\theta}}^{t+1}\|^{2}] + \|\mathbf{w}_{f}^{t}\|^{2} \\
\leq \frac{2}{\hat{K}} \left[ \left( \frac{1+\gamma}{\bar{\mu}} \right) B \|\nabla F(\tilde{\boldsymbol{\theta}}^{t})\| + \left( \frac{\gamma L + \lambda}{\bar{\mu}} \right) \|\mathbf{w}^{t}\| \right]^{2} + \|\mathbf{w}_{p}^{t}\|^{2}, \\
\leq \frac{1}{\hat{K}} \mathbb{E}_{k} [\|\boldsymbol{\theta}_{k}^{t+1} - \bar{\boldsymbol{\theta}}^{t+1}\|^{2}] + \|\mathbf{w}_{f}^{t}\|^{2} \\
\leq \frac{1}{\hat{K}} \mathbb{E}_{k} [\|(\boldsymbol{\theta}_{k}^{t+1} - \bar{\boldsymbol{\theta}}^{t}) - (\bar{\boldsymbol{\theta}}^{t+1} - \bar{\boldsymbol{\theta}}^{t})\|^{2} + \|\mathbf{w}_{f}^{t}\|^{2}, \\
\leq \frac{1}{\hat{K}} \mathbb{E}_{k} [\|(\boldsymbol{\theta}_{k}^{t+1} - \bar{\boldsymbol{\theta}}^{t}) - (\bar{\boldsymbol{\theta}}^{t+1} - \bar{\boldsymbol{\theta}}^{t})\|^{2}] + \|\mathbf{w}_{f}^{t}\|^{2} \\
\leq \frac{1}{\hat{K}} \mathbb{E}_{k} [\|(\boldsymbol{\theta}_{k}^{t+1} - \bar{\boldsymbol{\theta}}^{t}) - (\bar{\boldsymbol{\theta}}^{t+1} - \bar{\boldsymbol{\theta}}^{t})\|^{2} + \|\mathbf{w}_{f}^{t}\|^{2} \\
\leq \frac{1}{\hat{K}} \mathbb{E}_{k} [\|(\boldsymbol{\theta}_{k}^{t+1} - \bar{\boldsymbol{\theta}}^{t}) - (\bar{\boldsymbol{\theta}}^{t+1} - \bar{\boldsymbol{\theta}}^{t})\|^{2}] + \|\mathbf{w}_{f}^{t}\|^{2} \\
\leq \frac{1}{\hat{K}} \mathbb{E}_{k} [\|(\boldsymbol{\theta}_{k}^{t+1} - \bar{\boldsymbol{\theta}}^{t}) - (\bar{\boldsymbol{\theta}}^{t+1} - \bar{\boldsymbol{\theta}}^{t})\|^{2} + \|\mathbf{w}_{f}^{t}\|^{2} \\
\leq \frac{1}{\hat{K}} \mathbb{E}_{k} [\|(\boldsymbol{\theta}_{k}^{t+1} - \bar{\boldsymbol{\theta}}^{t}) - (\bar{\boldsymbol{\theta}}^{t+1} - \bar{\boldsymbol{\theta}}^{t})\|^{2} + \|\mathbf{w}_{f}^{t}\|^{2} \\
\leq \frac{1}{\hat{K}} \mathbb{E}_{k} [\|(\boldsymbol{\theta}_{k}^{t+1} - \bar{\boldsymbol{\theta}}^{t}) - (\bar{\boldsymbol{\theta}}^{t+1} - \bar{\boldsymbol{\theta}}^{t})\|^{2} + \|\mathbf{w}_{f}^{t}\|^{2} \\
\leq \frac{1}{\hat{K}} \mathbb{E}_{k} [\|\boldsymbol{\theta}_{k}^{t+1} - \bar{\boldsymbol{\theta}}^{t+1}\|^{2} + \|\mathbf{w}_{f}^{t}\|^{2} \\
\leq \frac{1}{\hat{K}} \mathbb{E}_{k} [\|\boldsymbol{\theta}_{k}^{t+1} - \bar{\boldsymbol{\theta}}^{t+1}\|^{2} + \|\mathbf{w}_{f}^{t}\|^{2} \\
\leq \frac{1}{\hat{K}} \mathbb{E}_{k} [\|\boldsymbol{\theta}_{k}^{t+1} - \bar{\boldsymbol{\theta}}^{t+1}\|^{2} + \|\mathbf{w}_{f}^{t}\|^{2} \\
\leq \frac{1}{\hat{K}} \mathbb{E}_{k} [\|\boldsymbol{\theta}_{k}^{t+1} - \bar{\boldsymbol{\theta}}^{t+1}\|^{2} + \|\mathbf{w}_{f}^{t}\|^{2} \\
\leq \frac{1}{\hat{K}} \mathbb{E}_{k} [\|\boldsymbol{\theta}_{k}^{t+1} - \bar{\boldsymbol{\theta}}^{t+1}\|^{2} + \|\mathbf{w}_{f}^{t}\|^{2} \\
\leq \frac{1}{\hat{K}} \mathbb{E}_{k} [\|\boldsymbol{\theta}_{k}^{t+1} - \bar{\boldsymbol{\theta}}^{t+1}\|^{2} + \|\mathbf{w}_{f}^{t}\|^{2} \\
\leq \frac{1}{\hat{K}} \mathbb{E}_{k} [\|\boldsymbol{\theta}_{k}^{t+1} - \bar{\boldsymbol{\theta}}^{t}\|^{2} + \|\mathbf{w}_{f}^{t}\|^{2} + \|\mathbf{w}_{f}^{t}\|^{2} + \|\mathbf{w}_{f}^{t}\|^{2} + \|\mathbf{w}_{f}^{t}\|^{2} + \|\mathbf{w}_{f}^{$$

where (24) and Assumption 1 yields inequalities (5) and (6) respectively. We complete the upperbound on  $q^t$  by substituting and thereafter adjusting the bounds from (26) and (46) in (44) and we get

$$q^{t} \leq \left[ \|\nabla F(\tilde{\boldsymbol{\theta}}^{t})\| + L \|\mathbf{w}_{p}^{t}\| + 2L \left\{ \left( \frac{1+\gamma}{\bar{\mu}} \right) B \|\nabla F(\tilde{\boldsymbol{\theta}}^{t})\| \right. \\ + \left( \frac{\bar{\mu} + \gamma L + \lambda}{\bar{\mu}} \right) \|\mathbf{w}_{p}^{t}\| \right\} \right] \times \left[ \frac{\sqrt{2}}{\sqrt{\hat{K}}} \left\{ \left( \frac{1+\gamma}{\bar{\mu}} \right) B \|\nabla F(\tilde{\boldsymbol{\theta}}^{t})\| + \left( \frac{\gamma L + \lambda}{\bar{\mu}} \right) \|\mathbf{w}_{p}^{t}\| \right\} + \|\mathbf{w}_{p}^{t}\| \right] \\ + L \left[ \frac{2}{\hat{K}} \left\{ \left( \frac{1+\gamma}{\bar{\mu}} \right) B \|\nabla F(\tilde{\boldsymbol{\theta}}^{t})\| + \left( \frac{\gamma L + \lambda}{\bar{\mu}} \right) \|\mathbf{w}_{p}^{t}\| \right\}^{2} + \|\mathbf{w}_{p}^{t}\|^{2} \right]$$

$$(47)$$

Now taking expectation  $\mathbb{E}_{\mathbf{w}_n^t}[.]$  and using (16), we get

$$q^{t} \leq \left[ \frac{B}{\sqrt{\hat{K}}\bar{\mu}} \left( 1 + \gamma + \frac{(\gamma L + \lambda)\sqrt{\kappa}\sqrt{d}\sigma}{\hat{K}\sqrt{P}} \right) \right. \\ \left. \left( \sqrt{2} + \frac{3\sqrt{\kappa}\sqrt{2d}LB\sigma}{\hat{K}\sqrt{P}} + \frac{2LB\sqrt{\kappa}\sqrt{d}\sigma}{\sqrt{\hat{K}P}} \right) \right. \\ \left. + \frac{LB^{2}}{\hat{K}\bar{\mu}^{2}} \left( 1 + \gamma + \frac{(\gamma L + \lambda)\sqrt{\kappa}\sqrt{d}\sigma}{\hat{K}\sqrt{P}} \right)^{2} (2\sqrt{2\hat{K}} + 2) \right. \\ \left. + \frac{\sqrt{\kappa}\sqrt{d}\sigma B}{\hat{K}\sqrt{P}} + \frac{4LB^{2}\kappa d\sigma^{2}}{\hat{K}^{2}P} \right] \times \|\nabla F(\tilde{\boldsymbol{\theta}}^{t})\|^{2}.$$
 (48)

It is important to note here also that if  $\sigma = 0$ , we get the same result as FedProx.

Finally, we prove the theorem by substituting the bounds from (36) and (48) into (40).

## A. Fading

Following the proof steps similar to Theorem 2, we have

$$\mathbb{E}_{\mathcal{K}^t}[F(\tilde{\boldsymbol{\theta}}^{t+1})] \le F(\bar{\boldsymbol{\theta}}^{t+1}) + q^t, \tag{49}$$

The upperbound on the  $q^t$  is given as

$$q^{t} \leq \mathbb{E}_{\mathcal{K}^{t}} \left[ \underbrace{\left\{ \|\nabla F(\boldsymbol{\theta}^{t})\| + L\left(\|\bar{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^{t}\| + \|\tilde{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^{t}\|\right) \right\}}_{L_{0}} \right]$$

$$\|\tilde{\boldsymbol{\theta}}^{t+1} - \bar{\boldsymbol{\theta}}^{t+1}\|$$

$$\leq \left( \|\nabla F(\tilde{\boldsymbol{\theta}}^{t})\| + L\mathbb{E}_{\mathcal{K}^{t}}\|\mathbf{w}_{f}^{t}\| + 2L\|\bar{\boldsymbol{\theta}}^{t+1} - \boldsymbol{\theta}^{t}\| \right)$$

$$\mathbb{E}_{\mathcal{K}^{t}} \|\tilde{\boldsymbol{\theta}}^{t+1} - \bar{\boldsymbol{\theta}}^{t+1}\| + L\mathbb{E}_{\mathcal{K}^{t}}\|\tilde{\boldsymbol{\theta}}^{t+1} - \bar{\boldsymbol{\theta}}^{t+1}\|^{2}. \tag{50}$$

Further,  $\mathbb{E}_{\mathcal{K}^t}\left[\| ilde{ heta}^{t+1} - ar{ heta}^{t+1}\|^2
ight]$  can be upperbounded as

$$\mathbb{E}_{\mathcal{K}^{t}} \left[ \|\tilde{\boldsymbol{\theta}}^{t+1} - \bar{\boldsymbol{\theta}}^{t+1}\|^{2} \right] = \mathbb{E}_{\mathcal{K}^{t}} \left[ \left\| \frac{1}{|\mathcal{K}^{t}|} \sum_{k \in \mathcal{K}^{t}} \boldsymbol{\theta}_{k}^{t+1} + \mathbf{w}_{f}^{t} - \bar{\boldsymbol{\theta}}^{t+1} \right\|^{2} \right] \\
\leq \frac{1}{(\hat{K})^{2}} \sum_{k=1}^{\hat{K}} \mathbb{E}_{\mathcal{K}^{t}} [\|\boldsymbol{\theta}_{k}^{t+1} - \bar{\boldsymbol{\theta}}^{t+1}\|^{2}] + \|\mathbf{w}_{f}^{t}\|^{2} \\
\leq \frac{1}{\hat{K}} \mathbb{E}_{k} [\|\boldsymbol{\theta}_{k}^{t+1} - \bar{\boldsymbol{\theta}}^{t+1}\|^{2}] + \|\mathbf{w}_{f}^{t}\|^{2} \\
' \leq \frac{1}{\hat{K}} \mathbb{E}_{k} [\|(\boldsymbol{\theta}_{k}^{t+1} - \tilde{\boldsymbol{\theta}}^{t}) - (\bar{\boldsymbol{\theta}}^{t+1} - \tilde{\boldsymbol{\theta}}^{t})\|^{2}] + \|\mathbf{w}_{f}^{t}\|^{2} \\
\leq \frac{2}{\hat{K}} \mathbb{E}_{k} [\|(\boldsymbol{\theta}_{k}^{t+1} - \tilde{\boldsymbol{\theta}}^{t})\|^{2}] + \|\mathbf{w}_{f}^{t}\|^{2} \tag{51}$$

where (1) follows from Jensen's inequality. (2) is derived using Lemma 4 in [3]. We add and subtract  $\bar{\boldsymbol{\theta}}^t$  in (3) and finally we arrive at (4) because  $\mathbb{E}\left[\boldsymbol{\theta}_k^{t+1}\right] = \bar{\boldsymbol{\theta}}^{t+1}$ .

$$\mathbb{E}_{\mathcal{K}^{t}}\left[\|\tilde{\boldsymbol{\theta}}^{t+1} - \bar{\boldsymbol{\theta}}^{t+1}\|^{2}\right] \leq \frac{2}{\hat{K}} \mathbb{E}_{k}[\|\boldsymbol{\theta}_{k}^{t+1} - \tilde{\boldsymbol{\theta}}^{t}\|^{2}] + \|\mathbf{w}_{f}^{t}\|^{2} \\
\leq \frac{2}{\hat{K}} \mathbb{E}_{k}\left[\left(\frac{1+\gamma}{\bar{\mu}}\right)\|\nabla f_{k}(\tilde{\boldsymbol{\theta}}^{t})\| + \left(\frac{\gamma L + \lambda}{\bar{\mu}}\right)\|\mathbf{w}_{f}^{t}\|\right]^{2} + \|\mathbf{w}_{f}^{t}\|^{2} \\
\leq \frac{2}{\hat{K}}\left[\left(\frac{1+\gamma}{\bar{\mu}}\right)B\|\nabla F(\tilde{\boldsymbol{\theta}}^{t})\| + \left(\frac{\gamma L + \lambda}{\bar{\mu}}\right)\|\mathbf{w}_{f}^{t}\|\right]^{2} + \|\mathbf{w}_{f}^{t}\|^{2}, \tag{52}$$

where (24) and Assumption 1 yields (5) and (6) respectively. We complete the upperbound on  $q^t$  by substituting and thereafter adjusting the bounds from (26) and (52) in (44) and we get

$$q^{t} \leq \left[ \|\nabla F(\tilde{\boldsymbol{\theta}}^{t})\| + L\|\mathbf{w}_{f}^{t}\| + 2L\left\{ \left(\frac{1+\gamma}{\bar{\mu}}\right)B\|\nabla F(\tilde{\boldsymbol{\theta}}^{t})\| + \left(\frac{\bar{\mu} + \gamma L + \lambda}{\bar{\mu}}\right)\|\mathbf{w}_{f}^{t}\| \right\} \right] \times \left[ \frac{\sqrt{2}}{\sqrt{\hat{K}}} \left\{ \left(\frac{1+\gamma}{\bar{\mu}}\right)B\|\nabla F(\tilde{\boldsymbol{\theta}}^{t})\| + \left(\frac{\gamma L + \lambda}{\bar{\mu}}\right)\|\mathbf{w}_{f}^{t}\| \right\} + \|\mathbf{w}_{f}^{t}\| \right] + L\left[ \frac{2}{\hat{K}} \left\{ \left(\frac{1+\gamma}{\bar{\mu}}\right)B\|\nabla F(\tilde{\boldsymbol{\theta}}^{t})\| + \left(\frac{\gamma L + \lambda}{\bar{\mu}}\right)\|\mathbf{w}_{f}^{t}\| \right\}^{2} + \|\mathbf{w}_{f}^{t}\|^{2} \right].$$
(53)

Now taking expectation  $\mathbb{E}_{\mathbf{w}_{t}^{t}}[.]$  and using (18), we have

$$q^{t} \leq \left[\frac{B}{\sqrt{\hat{K}h_{min}}\bar{\mu}}\left(1 + \gamma + \frac{(\gamma L + \lambda)\sqrt{\kappa}\sqrt{d}\sigma}{\hat{K}h_{min}\sqrt{P}}\right)\right]$$

$$\left(\sqrt{2} + \frac{3\sqrt{\kappa}\sqrt{2d}LB\sigma}{\hat{K}h_{min}\sqrt{P}} + \frac{2LB\sqrt{\kappa}\sqrt{d}\sigma}{\sqrt{\hat{K}h_{min}P}}\right)$$

$$+ \frac{LB^{2}}{\hat{K}h_{min}\bar{\mu}^{2}}\left(1 + \gamma + \frac{(\gamma L + \lambda)\sqrt{\kappa}\sqrt{d}\sigma}{\hat{K}h_{min}\sqrt{P}}\right)^{2}$$

$$\left(2\sqrt{2\hat{K}h_{min}} + 2\right) + \frac{\sqrt{\kappa}\sqrt{d}\sigma B}{\hat{K}h_{min}\sqrt{P}} + \frac{4LB^{2}\kappa d\sigma^{2}}{\hat{K}^{2}h_{min}^{2}P}\right] \times \|\nabla F(\tilde{\boldsymbol{\theta}}^{t})\|^{2}.$$
(54)

Finally, we prove the theorem by substituting the bounds from (36) and (54) into (49).

## B. Computations to Compute Optimal $\lambda$ :

In discussions after theorem 1 and theorem 2, we alluded to the constants  $a_1,a_2$  and  $a_3$  and and  $b_1,b_2$  and  $b_3$ , respectively, for optimal  $\lambda$  computation. The expressions to compute these constants are as given below:

$$a_1 = \frac{LB^2 \kappa d\sigma^2}{2K^2 P},$$

$$a_2 = (LB^2 \gamma + LB^2 + B + LB + \gamma^2 L^2 B^2) \frac{\sqrt{\kappa d}\sigma}{K\sqrt{P}}$$

$$+ \frac{L^2 B^2 \gamma \kappa d\sigma^2}{K^2 P} + \gamma B - 1,$$

$$a_3 = (\gamma L^2 B^2 + \gamma LB + \gamma L^2 B) \frac{\sqrt{\kappa d}\sigma}{K\sqrt{P}} + \frac{\gamma^2 L^3 B^2 \kappa d\sigma^2}{2K^2 P}$$

$$+ \frac{LB^{2}(1+\gamma)^{2}}{2} + (1+\gamma)B,$$

$$b_{1} = \frac{LB^{2}\kappa d\sigma^{2}}{2K^{2}P} + \frac{5\sqrt{2}LB^{2}\kappa d\sigma^{2} + \sqrt{2}B\sqrt{\kappa d}\sigma}{\hat{K}^{2}\sqrt{\hat{K}}P} + \frac{8LB^{2}\kappa d\sigma^{2}}{\hat{K}^{2}P} + B,$$

$$b_{2} = \frac{(LB^{2}\gamma + LB^{2} + B + LB)\sqrt{\kappa d}\sigma}{K\sqrt{P}} + \frac{L^{2}B^{2}\gamma\kappa d\sigma^{2}}{K^{2}P} + \frac{14\kappa d\sigma^{2}}{\hat{K}^{2}P}$$

$$+ \left(\frac{16LB^{2}(1+\gamma) + \sqrt{2}\gamma LB}{\sqrt{\hat{K}}} + 2(1+\gamma)LB^{2}\right)\frac{\sqrt{\kappa d}\sigma}{\hat{K}\sqrt{P}}$$

$$+ \frac{B(1+\gamma)\sqrt{2}}{\sqrt{\hat{K}}} + \gamma B - 1,$$

$$b_{3} = (1+\gamma)LB + \frac{LB^{2}(1+\gamma)^{2}}{2} + \frac{LB^{2}(1+\gamma)^{2}(2\sqrt{2\hat{K}} + 2)}{\hat{K}}$$

$$+ \frac{L^{3}B^{2}\gamma^{2}\kappa d\sigma^{2}}{K^{2}P} + \frac{(L^{2}B\gamma + B\gamma L + L^{2}B^{2}\gamma + L^{2}B^{2}\gamma^{2})\sqrt{\kappa d}\sigma}{K\sqrt{P}}$$

$$+ \frac{5L^{3}B^{2}\gamma^{2}\kappa d\sigma^{2}}{\hat{K}^{2}P} + \frac{16L^{2}B^{2}\gamma^{2}\sqrt{\kappa d}\sigma}{\hat{K}^{2}\sqrt{P}}.$$
(55)

## REFERENCES

- T. Sery, N. Shlezinger, K. Cohen, and Y. C. Eldar, "Over-the-air federated learning from heterogeneous data," *IEEE Transactions on Signal Processing*, vol. 69, pp. 3796–3811, 2021.
- [2] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, "Federated optimization in heterogeneous networks," *Proceedings of Machine learning and systems*, vol. 2, pp. 429–450, 2020.
- [3] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, "On the convergence of fedavg on non-iid data," arXiv preprint arXiv:1907.02189, 2019.